Vi INFORMIX

INFORMIX-4GL

A Twenty-Minute Guide

Version 1.10

THE INFORMIX SOFTWARE PRODUCT AND USER MANUAL ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE INFORMIX
SOFTWARE PRODUCT AND USER MANUAL IS WITH YOU. SHOULD THE INFORMIX SOFTWARE PRODUCT AND USER MAN-
UAL PROVE DEFECTIVE, YOU (AND NOT INFORMIX SOFTWARE OR ANY AUTHORIZED REPRESENTATIVE OF INFORMIX
SOFTWARE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION. IN NO EVENT WILL
INFORMIX SOFTWARE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE SUCH INFORMIX SOFTWARE
PRODUCT OR USER MANUAL EVEN IF INFORMIX SOFTWARE OR AN AUTHORIZED REPRESENTATIVE OF INFORMIX SOFT-
WARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDI-
TION, INFORMIX SOFTWARE SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OR INABILITY TO USE SUCH
INFORMIX SOFTWARE PRODUCT OR USER MANUAL AND BASED UPON STRICT LIABILITY OR INFORMIX SOFTWARE'S
NEGLIGENCE. SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO STATE.

Copyright © 1986 by Informix Software, Inc., Menlo Park, California

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any
means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval
systems—without permission of the publisher.

Published by:
Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

INFORMIX and File-it! are registered trademarks of Informix Software, Inc. RDSQL and C-ISAM are trademarks of Informix
Software, Inc. UNIX is a trademark of AT&T.

November 1, 1986
Version 1.10

Design and Production
Clennon Associates

Table of Contents

[ntroduction 2

4GL Features 3

Example Application 11

Recap of INFORMIX-4GL 28
Other SQL Products 29

INFORMIX-4GL

A Twenty-Minute Guide

Version 1.10

2

Building an information management application with a database product should
not require an advanced degree in computer science. You should be able to move
quickly from the conception of a series of operations you would like to perform on
the database to an application program that allows you and others to perform
these operations. At the same time, you want the interface between your
application and the user to be friendly and easy to use. Creating windows, menus,
and screen forms that facilitate the user’s task of entering and retrieving data
should be easy to do. Extracting information and displaying it in an attractive
report format should be straightforward and part of the same program. You
should be able to execute all of these operations—and more, using an industry
standard retrieval syntax. Other people interested in your application should be
able to read and understand your program without extensive training.

Informix Software, Inc., has simplified the process of creating an application by
combining natural database operations with program-flow statements into a
fourth-generation language, INFORMIX-4GL. INFORMIX-4GL is built upon
RDSQL™, our extension of the Structured Query Language (SQL) developed by
IBM. SQL is rapidly becoming the standard query language for database
management systems, and RDSQL conforms to the ANSI standards for SQL
implementations.

INFORMIX-4GL joins five other members of the Informix product line and is
completely compatible with each of these products:

INFORMIX-SQL

INFORMIX-ESQL/C (Embedded SQL for C)
INFORMIX-ESQL/COBOL (Embedded SQL for COBOL)
File-it!®

C-ISAM™

Introduction

3

A well designed fourth-generation language has two characteristics that make it
desirable as an application-making tool. The first is the presence of non-
procedural statements that permit you to describe what is wanted without having
to list the detailed steps on how it should be achieved. The second is that the
language was developed with specific types of applications in mind—database
applications. Unlike third-generation languages like C, Pascal, and COBOL that
are generalized and have no particular application built into their design, a
fourth-generation language has a specific focus. INFORMIX-4GL has been
designed by experts in database management software. They have introduced
features that make it simple for you to create powerful database applications with
a few brief statements. With these statements you can perform the following
functions:

Use windows

Create menus

Collect input from screen forms

Use SQL to manipulate a database

Call for help screens

Create reports

Collect multi-row data from a single form with scrolling
Provide query-by-example forms

Trap user-entered function and control keys
Set up conditional screen attributes

Have access to debugging tools

Call 4GL or C library functions

Menus

INFORMIX-4GL makes it easy to create Lotus-like ring menus (Figure 1) that
list the possible options. The user can select an option by typing the first letter of
the option or by using the [SPACEBAR] to move the highlight from one option
to the next and pressing [RETURN].

CUSTOMER: Customer Orders Stock Reports Exit
Enter and maintain customer data

Figure 1. Ring Menu

4GL Features

4

Help Screens

You can enter help messages for each menu option and data entry opportunity
into an ordinary text file. These messages are automatically read and displayed
by your program at runtime when the user presses the help key. You can amend or
enhance these help messages without recompiling your program.

Input from Screen Forms

You can create screen forms that check input data for a variety of integrity
constraints (Figure 2). Your program collects data from the screen and puts it
into program variables with a single statement. The user can move around the
screen from field to field with the arrow keys or by using the [RETURN] key.
The user signals when data entry is complete by pressing the ACCEPT key.

(N\

Press the ACCEPT key to enter new customer data
Press the INTERRUPT key to return to CUSTOMER menu

Type Control-W for HELP f----------

Customer Form

Number []
Owner Name [I]
Company Hi]
Address []

[]
City [] State:[CA] Zip Code:[]
Telephone []

N y

Figure 2. Screen at the Beginning of Data Entry

S

Input to Screen Arrays

You can collect data from multiple rows on a screen, called a “screen array.” This
allows the user to enter and update several rows at a time (Figure 3). For
example, the user could enter all the items for an order, having the data scroll
automatically when the screen array is full. Just a single line of 4GL code permits
the user to move throughout the screen array, entering and changing data,
inserting new rows or deleting old rows, and paging through the data that
automatically gets stored in a program array.

-

Enter the item quantity

ORDER FORM

Customer Number:[118] Contact Name:[Dick
Company Name:[Blue Ribbon Sports]
Address:[5427 College 1]

1[Baxter]

City:[Oakland

] State:[CA] Zip Code:[94609]

Telephone: [415-655-0011]
Order No:[1 Order Date:[11/27/1986] Purchase Order No:[A12345]
Shipping Instructions:[Avoid weekend delivery]
Item No. Stock No. Code Description Quantity Price Total
[11 [6] [SMT] [tennis ball][41 [36.00] [144.00]
[11 5] [NRG] [tennis racket] [1[28.00] [
[11 110 11 11 11]
[11 10 11 11 1]
Running Total including Tax and Shipping Charges:

g

Figure 3. Input to a Screen Array

6

Window Management

With INFORMIX-4GL, you can create applications that devote different
rectangular parts of the screen to different activities. Each rectangular portion of
the screen is called a window. In your application programs, you can use windows
to display screen forms, prompts, menus, report output, or anything else that you
want the user to pay special attention to.

INFORMIX-4GL includes powerful window management statements that allow
you to open, change, clear, and close windows within your programs. For example,
the customer-entry program in this guide opens a state selection window if the
user does not enter a valid state code in the State field of the Customer Form.

'd A

Press the ACCEPT key to enter new customer data
Press the INTERRUPT key to return to CUSTOMER menu

Type Control-W for HELP |----------

Customer | State Selection
Number :[] | AL Alabama
Owner Name :[Enid AK Alaska
Company :[Smythe Sports [AZ Arizona
Address :[Bay Road AR Arkansas

[P.0.Box 111 | CA California
City :[Palo Alto C0 Colorado]
Telephone :[CT Connecticut
\. J

Figure 4. State Selection Window

7

When the user selects a state by positioning the cursor on a row and pressing the
ACCEPT key, the program automatically displays the state code in the State
field on the underlying form.

')

Press the ACCEPT key to enter new customer data
Press the INTERRUPT key to return to CUSTOMER menu

Type Control-W for HELP |----------

Customer Form

Number :[]
Owner Name :[Enid 1[Smythe]
Company :[Smythe Sports]
Address :[Bay Road 1
[P.0.Box 111]
City :[Palo Alto] State:[CA] Zip Code:[//]

Telephone :[

\ J/

Figure 5. Automatic Entry of State Code in the State Field

With the window management statements provided by INFORMIX-4GL,
you can create an effective user interface for your application programs.

Active Function Keys

Your program can capture user-entered function keys and control characters
during data entry to provide a variety of programmable special effects, including
special-purpose windows, data validation, field-by-field help messages, default
values, and a display of alternative inputs. For example, in an application dealing
with personnel records, you could display different help screens for the
department field, depending upon the value already entered for the division field.

8

Query by Example

A simple INFORMIX-4GL statement collects data from a query-by-example
entry and inserts it into a string. You can then use the string to prepare a dynamic
SQL statement that queries the database. The entry values from the following

screen (Figure 6) cause INFORMIX-4GL to place the string

customer . customer_num)“115” and customer.1name matches “B*" and customer.city="0Oakland”

in a specified program variable.

(

Enter criteria for selection

Type Control-W for HELP

Customer Form

Number ;115]

Owner Name :[1[8*

Company :[]

Address []
[

City :[Oakland

Telephone :[

] State:[] Zip Code:[

1

Figure 6. Query-by-Example Sample Entry

9

Reports

You can create reports that combine data from one or more tables as well as from
computed program variables. You can execute other INFORMIX-4GL
statements in the middle of the report. For example, your program can update
your database in the middle of the report, if the intermediate results, calculated
while printing the report, indicate that an update is appropriate.

Default Screen Attributes

You can set up data dictionary-based default screen display attributes and input-
checking values and formats that will apply to all forms in your application. The
attributes can be conditional, displaying a variable in green, for example, when its
value is above 1000, in yellow when its value is less than 1000 but greater than
100, and in red when its value drops below 100.

SQL
With INFORMIX-4GL, you can use the full power of the ANSI standard SQL
with Informix extensions to manipulate your database. This includes

The SQL data manipulation language

The SQL data definition language

The full range of database-, table-, and column-level data security
Transaction logging and recovery with commit and rollback

The use of views as a convenience or to guarantee data integrity
Clustered indexes and auto-indexing

“Scrolling” select cursors and insert cursors that permit buffered insertion
of data into a database

The distinction between null values and zero values

e Outer joins of unlimited complexity

o Informix extensions to SQL that permit you to create, drop, and change
databases in the middle of your application and to use powerful date
functions in addition to the standard aggregates in SQL statements

e o o o o o o

10

Debugging Tools

The simplicity of a fourth-generation language reduces the length of your
application and the time required to debug it. INFORMIX-4GL provides a
number of debugging tools, including error logging and trapping and the recovery
from errors.

Function Libraries

You can call functions from a supplied library of pre-compiled functions. You can
also create your own functions using the C language or INFORMIX-4GL and
call them from within your application.

And More

In addition to these features, INFORMIX-4GL contains a sophisticated
application development interface, the Programmer’s Environment. You or a
team of developers can build an application through an interface that anticipates
the steps of development and keeps track of the components of your application.
After editing one module of your application, you can compile it and link it with
the other modules of your application, and with whatever library functions you
used—all with a single keystroke. Only those modules that have been altered
since the last compilation are recompiled.

The full package of INFORMIX-4GL includes several utility programs. These
programs ease the transition from previous applications that use Informix
products, check and restore the integrity of your index files, load data from other
sources, and manipulate the data dictionary tables that govern default attributes
and data checking for your screen forms.

11

The quickest way to learn about the ease of programming with INFORMIX-
4GL is to read through program excerpts that produce some of the effects that
were described earlier. (These program excerpts are from the demonstration
application that accompanies the product and that appears in Appendix A of the
INFORMIX-4GL Reference Manual.) Since you signed on for only twenty
minutes when you picked up this booklet, it is not possible to teach you all of the
syntax for writing an INFORMIX-4GL program. You will be surprised,
nevertheless, by how simple it is to read and understand the INFORMIX-4GL
program excerpts that achieve these sophisticated effects.

Assume that you have been hired by a wholesaler of sports equipment to create a
database management application to keep track of customers (retailers), the
orders placed by these customers, and the types of stock, and to produce a series
of reports based on this data. The examples that follow treat portions of this
application. Assume that the database and its tables (files) have already been
created. For example, one of the tables is the customer table and it has ten
columns (fields) as shown in Figure 7.

Column Name Data Type Meaning of Data Type
customer_num serial(101) unique integers starting with 101
fname char(15) character string of length 15
Iname char(15) character string of length 15
company char(20) character string of length 20
addressl char(20) character string of length 20
address2 char(20) character string of length 20
city char(15) character string of length 15
state char(2) character string of length 2
zipcode char(5) character string of length 5
phone char(18) character string of length 18

Figure 7. The customer Table

Example Application

12

Menus
You can produce the menu illustrated earlier in Figure 1 with the following code:

MAIN
DEFER INTERRUPT
OPTIONS
HELP FILE “helpdemo”

MENU “MAIN”

COMMAND “Customer” “Enter and maintain customer data” HELP 101
CALL cust()

COMMAND “Orders” “Enter and maintain orders” HELP 102
CALL ord()

COMMAND “Stock” “Enter and maintain stock list” HELP 103
CALL stock()

COMMAND “Reports” “Print reports and mailing labels” HELP 104
CALL rept()

COMMAND “Exit” “Exit program and return to operating system” HELP 105
CLEAR SCREEN
EXIT PROGRAM

END MENU

END MAIN

Figure 8. The MAIN Program Routine

This program excerpt embodies the main routine for the entire application. Every
INFORMIX-4GL program must have a routine that starts with the keyword
MAIN and ends with END MAIN. This is where program control starts when
you run the program. The first line of the MAIN routine keeps the program from
stopping immediately when the user presses the INTERRUPT key. The next two
lines set the pathname of the file containing the HELP messages.

The menu is created by the non-procedural set of statements between MENU and
END MENU. The name of the menu is written after the keyword MENU. Each
option is listed after the keyword COMMAND and is followed by a string that is
listed on the second line of the screen below the menu options when that option is
highlighted (see Figure 1). Following the keyword HELP is the number of the
help text that appears on the screen if the user presses the HELP key. Below each
COMMAND line are a series of steps that the program follows if the user selects
that particular option. In each case, except for the Exit option, the program calls
a function and, when that function returns, redraws the menu automatically. You
can write the functions to carry out any INFORMIX-4GL statements, including
displaying a submenu.

13

The Exit option, in this case, clears the screen and returns the user to the
operating system, using the EXIT PROGRAM statement.

Screen Forms

To create the screen form displayed in Figure 2, you must write a form
specification file. Without leaving the Programmer’s Environment you can create
a default screen form with automatically generated field labels and modify it to
produce customer.per as shown in Figure 9.

DATABASE stores

SCREEN
Type Control-W for HELP ----------
Customer Form
Number :[f000]
Owner Name :[f001 1[f002]
Company :[f003]
Address :[1004 1
[f005
City :[1006] State:[a0] Zip Code:[f007]
Telephone :[f008]
TABLES
customer
ATTRIBUTES

f000 = customer.customer_num, NOENTRY;

1001 = customer. fname;

f002 = customer.lname;

£003 = customer.company;

f004 = customer.address1;

005 = customer.address2;

f006 = customer.city;

a0 = customer.state, UPSHIFT;

f007 = customer.zipcode;

008 = customer.phone, PICTURE = “s#u-sus-aunun sasus’;

Figure 9. The customer.per Form Specification File

14

You label each field in the SCREEN section with a field tag and identify each
field tag with the name of the field in the ATTRIBUTES section. In this case the
field names are the same as the names of the columns in the customer table. You
can also have fields that are not related to database columns. The field tags in this
example were generated automatically using a “default screen” feature of the
Programmer’s Environment.

There are many display attributes that you can assign to each field. The
customer.per example file uses only three. The field named customer.customer_num
has the attribute NOENTRY, signifying that during input on the screen form,
the cursor will not enter that field; it is for displaying values only. RDSQL assigns
a unique value to customer.customer_num when you insert the row corresponding
to the entries on the screen into the database. You do not want the user entering
values in that field.

customer.per uses the UPSHIFT attribute to convert all entries in the
customer.state field to uppercase characters. This way you can ensure that all
state values are uppercase, even if the user did not enter them using uppercase
letters.

Note: If the user does not enter a valid state code, the customer-entry program
opens a state selection window that displays the states and corresponding
abbreviations in a screen array. When the user moves the cursor to a state and
presses the ACCEPT key, the program enters the state code in the State field
automatically.

The form specification assigns the PICTURE attribute to the Telephone field.
This attribute requires that an entry conform to a specified format. When the
user moves the cursor into the Telephone field, INFORMIX-4GL displays the
format and allows the user to enter only digits in the field.

Address :[Bay Road]
[P.0. Box 111 1

City :[Palo Alto] State:[CA] Zip Code:[94305]
Telephone :[- -]

Figure 10. The PICTURE Attribute

15

After designing the form, you must compile it using the Form4GL program. If
you work within the Programmer’s Environment, this step occurs with one
keystroke.

Entering Data Using a Screen Form

After creating a screen form, you will want to write the INFORMIX-4GL code
to extract data from the screen and insert it into your database. Figure 11 shows
program excerpts that do this.

GLOBALS
DEFINE p_customer RECORD LIKE customer.*

END GLOBALS

OPEN FORM customer FROM “customer”
DISPLAY FORM customer

FUNCTION add_cust()

INPUT BY NAME p_customer.*

LET p_customer.customer_num = 0

INSERT INTO customer VALUES (p_customer.*)
END FUNCTION

Figure 11. Simple INPUT Example

The code at the top of Figure 11 defines a RECORD named p_customer. A
record is a collection of variables of varying type that can be treated as a group. It
corresponds closely to the Pascal or COBOL record and the C structure. In this
case, p_customer is defined LIKE the customer table displayed in Figure 7. In this

16

brief statement, the code has defined ten variables with the same names and data
types as the columns in the customer table. The code defines p_customer as a
GLOBAL record, which means that all the functions in the INFORMIX-4GL
program can use and alter the data stored in the variables of p_customer.

The next two lines of code are from the function that calls add_cust. They display
the form described in Figure 9 and shown in Figure 2.

The function add_cust takes input from the customer screen and stores the data in
the customer table of the database. The INPUT statement makes use of the fact
that the field names on the form and the variables defined in p_customer are the
same. The simplicity of the INPUT statement is matched only by its power. The
user can move about the form using arrow keys or the [RETURN] key, filling in
or rewriting any or all of the fields. When the entries are satisfactory, the user can
complete the entry by pressing the ACCEPT key anywhere in the form or by
pressing [RETURN] in the Telephone field.

The next line of add_cust handles the insertion of data entered on the form into
the database. Setting p_customer.customer_num to zero signals RDSQL to
provide the next sequential value to the customer_num column during the
INSERT statement.

Although this program excerpt has the essential functionality you want, the full
application embellishes it with additional features. The code in Figure 12
replaces the function add_cust with a more robust function input_cust.

17

FUNCTION input_cust()
DISPLAY “Press the ACCEPT key to enter a new customer” AT 1,1
DISPLAY “Press INTERRUPT to return to CUSTOMER menu” AT 2,1
LET int_flag = FALSE # Initialize 4GL’s interrupt flag

Section 1 - Collect data from form

INPUT BY NAME p_customer.*
AFTER FIELD state
CALL statehelp()
END INPUT
IF int_flag THEN # Test for interrupt
LET int_flag = FALSE
ERROR “Customer data discarded”
RETURN FALSE
END IF

Section 2 - Insert data into database

LET p_customer.customer_num = 0
INSERT INTO customer VALUES (p_customer.*)
LET p_customer.customer_num = SQLCA.SQLERRD[2]
DISPLAY BY NAME p_customer.customer_num
DISPLAY “Customer data entered” AT 24,1
RETURN TRUE

END FUNCTION

Figure 12. Full Routine Using the INPUT Statement

input_cust consists of two main sections. The first section consists of an INPUT
statement and an IF statement that tests whether the user pressed the
INTERRUPT key to terminate the INPUT statement. The INPUT statement
contains an AFTER FIELD clause that automatically calls the statehelp function
after the user moves the cursor out of the State field on the Customer Form. (The
statehelp function is described in the following section.) The user can terminate
the INPUT statement by pressing either the ACCEPT key or the INTERRUPT
key. If the user aborts the process by pressing the INTERRUPT key,
INFORMIX-4GL sets the global variable int_flag to TRUE. The IF statement
following the INPUT statement tests whether the INTERRUPT key has been
pressed. If the value of int_flag is TRUE, INFORMIX-4GL resets the int_flag
variable, displays a message, and leaves the input_cust function. (The return
value FALSE indicates to the calling function that data entry has been aborted.)

18

If the user terminates the INPUT statement by pressing the ACCEPT key,
INFORMIX-4GL executes the statements in the second section of the input_cust
function. This section handles the insertion of data entered on the form into

the database. RDSQL stores the value it automatically assigns to customer_num
in the component SQLERRD[2] of the global record SQLCA (SQL
Communications Area, a standard SQL language feature). input_cust retrieves
this value and displays it on the screen in the Number field along with an
appropriate message. The return value of TRUE indicates to the calling function
that customer data has been entered into the database.

The statehelp Function

The statehelp function shown in Figure 13 tests whether the entry in the State
field is valid. The function is called automatically after the user moves the cursor
out of the State field.

FUNCTION statehelp()
DEFINE idx INTEGER

SELECT COUNT(*) INTO idx FROM state
WHERE code = p_customer.state
IF idx = 1 THEN
RETURN
END IF

OPEN WINDOW w_state AT 8,40
WITH FORM “state_list”
ATTRIBUTE (BORDER, RED, FORM LINE 2)

CALL set_count(state_cnt)
DISPLAY ARRAY p_state TO s_state.*
LET idx = arr_curr()

CLOSE WINDOW w_state

LET p_customer.state = p_state[idx].code

DISPLAY BY NAME p_customer.state ATTRIBUTE (YELLOW)
END FUNCTION

Figure 13. The statehelp Function

19

The statehelp function uses a SELECT statement to test whether the current
entry in the State field exists in a state table. If the entry exists, the function ends;
otherwise, the function displays the state selection window shown in Figure 4 by
performing the following operations:

1. Opens a window that displays a form containing the s_state screen array.

2. Displays the values in the p_state program array in the screen array. (The
program array has already been filled with the names and abbreviations of
the states.)

Figure 14 shows how the data scrolls automatically when the user moves the
cursor with the arrow keys. The user can make a selection by moving the cursor to
a state code and pressing the ACCEPT key.

[AZ] [Arizona]
[AR] [Arkansas]
[CA] [California]
[CO] [Colorado]
[CT] [Connecticut]
[DE] [Delaware]
[FL] [Florida]

Figure 14. Automatic Scrolling of Data
3. Saves the position of the cursor in the p_state array.
Closes the state selection window.

Determines the state code from the position of the cursor in the p_state array.

R

Displays the state code in the State field of the original Customer Form
(see Figure 5).

20

Query by Example

There are several places in the complete application where the user must select a
particular customer. Since it is not known in advance what criteria the user might
have for selection, the code provides a function query_customer that allows the
user to select the customer by merely filling a form. With only a few lines of code,
a program can allow the user to enter whatever data is known about the customer,
display all customers satisfying the given criteria, and prompt the user to select
one of the customers displayed. For the purpose of this overview, you can imagine
that the code has displayed the form shown in Figure 15.

e N

Enter criteria for selection

Type Control-W for HELP f-----------

Customer Form

Number [1
Owner Name :[1]
Company []
Address :[]

[
City [
Telephone :[

] State:[] Zip Code:[]

L J
Figure 15. Query-by-Example Form

21

The query_customer function has four sections. The first section, shown in Figure
16, defines the variables that will be used, clears the form of any entries left over
from previous activities, and displays a message on the second screen line
instructing the user to enter query specifications.

FUNCTION query_customer()

DEFINE where_text CHAR(200),
query_text CHAR(250),
answer CHAR(1),
chosen,
exist INTEGER

CLEAR FORM

CALL clear_menu()

MESSAGE “Enter criteria for selection”

Figure 16. Section 1 of query_customer

The second section (Figure 17) turns the query-by-example input from the user
into an executable RDSQL statement in four steps:

1. INFORMIX-4GL constructs a string where_part from the user input. For
the input illustrated in Figure 6, the CONSTRUCT statement automatically
assigns the following string to where_part:

customer .customer_num)“115” and customer.lname matches “B*” and customer.city="Oakland”

2. The code creates a larger string by appending where_part to the end of the
string “select * from customer where ” and calls the result query_text. The
CLIPPED function removes all trailing blanks.

22

3. The code associates the string query_text with the statement identifier
statement_1.

4. The program names customer_set as the cursor (a pointer) to the current row,
if any, that results from executing the SELECT statement.

CONSTRUCT where_part ON customer.* FROM customer.*

LET query_text = “select * from customer where ", where_part CLIPPED
PREPARE statement_1 FROM query_text

DECLARE customer_set CURSOR FOR statement_1

Figure 17. Section 2 of query_customer

The critical part of this program is the non-procedural CONSTRUCT statement.
Like the INPUT statement, the CONSTRUCT statement allows the user to
move from field to field and to enter all sorts of data, data ranges, pattern
matches, and alternatives in each field. Only when the user presses the ACCEPT
key does the program control pass to the next line of code.

The third section of the query_customer function (Figure 18) presents the user
with the rows found by executing the query.

MESSAGE “”
LET chosen = FALSE
LET exist = FALSE
FOREACH customer_set INTO p_customer.*
LET exist = TRUE
DISPLAY BY NAME p_customer.*
PROMPT “Press 'y’ to select customer or RETURN to view next customer: "
FOR CHAR answer
IF answer MATCHES “[yY]" THEN
LET chosen = TRUE
EXIT FOREACH
END IF
END FOREACH

Figure 18. Section 3 of query_customer

23

The third section begins by erasing the message line and setting two flags to
FALSE. The flag chosen signals whether the user has chosen a row, while the flag
exist signals whether any rows were found at all. The FOREACH statement
opens the cursor customer_set and starts a loop that performs a series of fetches
from the database, displaying the rows returned one at a time on the screen. The
user is prompted to type ‘y’ to select the displayed row or to press [RETURN] to
view the next row. If the user presses ‘y’ or ‘Y’ the flag chosen is set to TRUE and
the program leaves the loop. Otherwise, the loop is repeated with the next row
until no more rows are left.

The final section (Figure 19) of the query_customer function tests the flags,
writes appropriate messages, and returns TRUE only if the user selects a row.

IF NOT exist THEN
MESSAGE “No customer satisfies query”
LET p_customer.customer_num = NULL
RETURN FALSE

END IF

IF NOT chosen THEN
CLEAR FORM
LET p_customer.customer_num = NULL
MESSAGE “No selection made”
RETURN FALSE

END IF

RETURN TRUE

END FUNCTION

Figure 19. Section 4 of query_customer

24

Reports

Getting information out of the database and formatting it for printing remains a
central purpose for most database applications. One of the reports in the
demonstration application creates mailing labels for selected customer rows that
have been ordered by zip code. The corresponding program excerpts consist of
two parts: the function print_labels (Figure 20) that is called from the REPORT
Menu and selects the data, and the non-procedural report labels_report (Figure
21) that describes how the data should be formatted.

FUNCTION print_labels()
DEFINE where_part CHAR(200),
query_text CHAR(250),
file_name CHAR(20)

DISPLAY FORM customer

CALL clear_menu()

DISPLAY “CUSTOMER LABELS:" AT 1,1

MESSAGE “Use query-by-example to select customer list”

CONSTRUCT where_part ON customer.* FROM customer.*

LET query_text = “select * from customer where ", where_part CLIPPED,
“ order by zipcode”

PREPARE statement_1 FROM query_text

DECLARE label_list CURSOR FOR statement_1

CLEAR SCREEN

PROMPT “Enter file name for labels)” FOR file_name

CLEAR SCREEN

MESSAGE “Printing mailing labels to ", file_name CLIPPED, “ -- Please wait”

START REPORT labels_report TO file_name
FOREACH label_list INTO p_customer.*
OUTPUT TO REPORT labels_report (p_customer.*)
END FOREACH
FINISH REPORT labels_report

MESSAGE “Labels printed to ", file_name CLIPPED
END FUNCTION

Figure 20. A Sophisticated Program Excerpt That Calls a Report

25

In the same way that query_customer used a query by example to select a set of
customers, print_labels selects the set of customers for which it will print labels.
The differences here are that the SELECT statement has an ORDER BY clause
that causes the output to be sorted by zip code and the cursor is named label_list.

After the query-by-example processing, the program prompts the user to enter
the name of a file to contain the labels. It then displays a message that the labels
are being printed. The report writing is governed by the next five lines and
consists of three steps. The START REPORT statement initiates the report
writing process and designates the file to contain the labels. The next stage is a
FOREACH loop that takes one row from the SELECT statement at a time and
delivers it to the report. The last step is the FINISH REPORT statement that
handles any end-of-report processing.

REPORT labels_report (r)
DEFINE r RECORD LIKE customer.*

OUTPUT
TOP MARGIN 0
BOTTOM MARGIN 0
PAGE LENGTH &

FORMAT
ON EVERY ROW
SKIP TO TOP OF PAGE
PRINT r.fname CLIPPED, 1 SPACE, r.lname
PRINT r.company
PRINT r.address1
IF r.address2 IS NOT NULL THEN
PRINT r.address2
END IF
PRINT r.city CLIPPED, “, ", r.state, 2 SPACES, r.zipcode
END REPORT

Figure 21. Program Excerpt Describing a Report

The report routine is named labels_report. There are two sections to this routine:
the OUTPUT section and the FORMAT section. The OUTPUT section
describes some output parameters: the margins and the page length (given here as
six lines; each label will occupy a “full page”).

26

The FORMAT section describes how the report should be organized on the page.
For each row that is handed to the report, the report will skip to the top of the
next page as defined in the OUTPUT section. The first row of each label contains
the first name (with following blanks clipped off), a space, and the last name of
the customer. The second row of the label is the customer’s company and the third
is the first address line. If a second address line exists, it will be the fourth line.
The last line contains, in usual manner for labels, the city, a comma and a space,
the state, two spaces, and the zip code.

This is a particularly simple report and only hints at the power of the report-
writing capability of INFORMIX-4GL. You can write reports with special first-
page formatting, headers on subsequent pages, and aggregate values such as
percentages, sums, averages, maximums, and minimums-not only for the entire
report but for groups of rows within the report. Your reports can be sent directly
to the printer. For example, the demonstration application automatically writes
an invoice when you enter a new order. Figure 22 shows the partial output of
another report that includes page headers, subtotals, and totals and that requires
only a half page of code.

27

West Coast Wholesalers, Inc.
Statement of ACCOUNTS RECEIVABLE - Jul 12, 1986

Ludwig Pauli/All Sports Supplies

Order Date Order Number Ship Date Amount
06/01/1986 1002 06/06/1986 $1,200.00
$1,200.00

West Coast Wholesalers, Inc.
Statement of ACCOUNTS RECEIVABLE - Jul 12, 1986

Anthony Higgins/Play Ball!

Order Date Order Number Ship Date Amount
01/20/1986 1001 02/01/1986 $250.00
03/23/1986 1011 04/13/1986 $99.00
09/01/1986 1013 09/13/1986 $143.80
10/12/1986 1003 10/13/1986 $959.00

$1,451.80

West Coast Wholesalers, Inc.
Statement of ACCOUNTS RECEIVABLE - Jul 12, 1986

George Watson/Watson & Son

Order Date Order Number Ship Date Amount
04/12/1986 1004 04/30/1986 $2,126.00
05/01/1986 1014 05/10/1986 $1,440.00

$3,566.00

Figure 22. Partial Accounts Receivable Report

28

These brief excerpts give you the flavor of writing an application using
INFORMIX-4GL. They use uppercase letters for keywords so that you can
distinguish the keywords of the language from the programmer-invented
identifiers. INFORMIX-4GL is case insensitive and ignores these distinctions.

INFORMIX-4GL represents a creative solution to the dilemma caused by the
unavoidable tension between flexibility and simplicity. Its basic statements are
simple; its optional extensions are rich. You can write useful programs with very
few lines of code. We designed INFORMIX-4GL to be a complete data
processing language. It is extremely unlikely that you will find things that you
cannot do within the options of the syntax. An interface to the C programming
language exists if you need it (for returning a cosine, for example).

In the examples that have been presented, you may have seen more procedural
steps in the INFORMIX-4GL program excerpts than you think a fourth-
generation language should have. There are two reasons for this.

The first reason is that the non-procedural parts are so terse and so powerful
that they take fewer lines of code to write. The MENU, INPUT, CONSTRUCT,
and window statements (and a number of other statements not illustrated here)
are very compact and yet they handle the lion’s share of the application. The
procedural statements do the bookkeeping and are much less succinct.
INFORMIX-4GL programs do have a fair amount of procedural statements,
but only because the non-procedural ones do so much work.

The second reason for having procedural statements is that the procedural
statements enable you to do things that the designers of INFORMIX-4GL could
not predict. You do not have to use them all, but the chances are that when you
need a special effect to implement your application, INFORMIX-4GL will meet
your need by providing you with the proper tools.

If you have written customized database applications using a third-generation
language, you will find that switching to INFORMIX-4GL turns a difficult and
error-filled process into an enjoyable one. If you have not customized your
application because you did not have the necessary programming skills, the ease
of programming with INFORMIX-4GL will dramatically expand the power you
have over your database. A new and simple tool for creating sophisticated
database applications is now available. The distance between application
planning and implementation has just become much shorter for everyone.

Recap of INFORMIX-4GL

29

[INFORMIX-4GL joins five other SQL products:

INFORMIX-SQL

INFORMIX-ESQL/C (Embedded SQL and Tools for C)
INFORMIX-ESQL/COBOL (Embedded SQL for COBOL)
File-it!

C-ISAM

We designed these products to meet the database management needs of people
with a wide spectrum of computer sophistication. INFORMIX-4GL satisfies the
application-building needs of the widest audience.

INFORMIX-SQL

INFORMIX-SQL is the relational database management system that developers
choose to create custom applications. Based on RDSQL, INFORMIX-SQL has
the tools to create and maintain databases, design custom screens and menus, and
produce custom-formatted reports. It also provides an interactive, application-
building environment that permits interactive manipulation of a database using
the SQL language. Through the menu-creating features of INFORMIX-4GL,
your 4GL programs can invoke applications built with INFORMIX-SQL and
make them part of a broader application. INFORMIX-SQL can enhance your
programming with INFORMIX-4GL by providing you the ability to test your
database queries and operations from the Programmer’s Environment through
the use of the interactive query language.

INFORMIX Embedded SQL and Tools for C

This package offers two sets of complementary tools for highly specialized
applications. First, INFORMIX-ESQL/C makes it easy for you to embed
RDSQL statements into your C code. With its advanced capabilities, you can
prepare dynamic queries and manipulate databases using SQL without leaving
your C program. A companion product, INFORMIX-ESQL/COBOL, makes
these same features (with the exception of handling dynamic queries) available to
COBOL programmers. Second, INFORMIX-ESQL/C includes programming

Other SQL Products

30

tools that make it possible for you to call C functions and special C library
routines while working in Ace (the INFORMIX-SQL report writer) and Perform
(the INFORMIX-SQL form transaction processor). Although you can perform
virtually every sophisticated database activity solely with INFORMIX-4GL, you
also have the option to call functions created with INFORMIX-ESQL/C in your
4GL programs.

File-it!

File-it! is a completely menu-driven, interactive file manager that makes it
simple to create and maintain tables in a database, to make screen queries, and to
print reports based on a single table. You can use the tables created by File-it/
with the other Informix products, and vice versa.

C-ISAM

C-ISAM is the foundation of Informix data management. It consists of a library
of C-language functions for creating and managing indexed file systems. As the
standard access method for the UNIX operating system, C-ISAM performs all
the required index file maintenance and manipulation tasks and provides fast
data access and retrieval, efficient storage, and comprehensive protection. All
SQL-based products use the C-ISAM file structure for their data and index files.

	01011175.tif
	01011176.tif
	01011177.tif
	01011178.tif
	01011179.tif
	01011180.tif
	01011181.tif
	01011182.tif
	01011183.tif
	01011184.tif
	01011185.tif
	01011186.tif
	01011187.tif
	01011188.tif
	01011189.tif
	01011190.tif
	01011191.tif
	01011192.tif
	01011193.tif
	01011194.tif
	01011195.tif
	01011196.tif
	01011197.tif
	01011198.tif
	01011199.tif
	01011200.tif
	01011201.tif
	01011202.tif
	01011203.tif
	01011204.tif
	01011205.tif
	01011206.tif

